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In contradistinction to the known theory on complex splines which are defined
on the boundary of a region in C, we define complex planar splines on a region
itself as a complex valued continuous function which is defined piecewise on
suitable meshes of that region. The main idea is to use nonholomorphic functions as
pieces, since holomorphic pieces would lead to just one holomorphic function on
the whole region. Some of the techniques used are available from the theory of
finite elements. But we also consider new aspects, namely, mapping properties of a
complex planar spline v and the difference f - v, where f is, in general, a
holomorphic function. For triangular meshes, rectangular and parallelogrammatic
meshes, and meshes on circular sectors, explicit expressions are provided; also
properties of the newly introduced complex planar splines are studied.

I. INTRODUCTION

In this paper we are concerned with the approximation of complex valued
functions by func~ions which we would like to call complex planar splines.

In the current literature (see e.g., Ahlberg [I], Ahlberg et al. [2-4]. Atteia
[7], and Schoenberg [12, 13D, complex splines are defined on the boundary
of a given region and are then extended into the interior by Cauchy's integral

* Research supported by the Office of Naval Research under Contract NOOOI4-77-C-0659.
The U.S. Government's right to retain a nonexclusive royalty-free license in and to the
copyright covering this paper, for governmental purposes, is acknowledged.

383
0021-9045/81/040383-20$02.00/0
Copyright © 1981 by Academic Press, Inc.

All rights of reproduction in any form reserved.



384 OPFER AND PURl

formula. However, this extension process is not easy to execute numerically.
Therefore, we offer another approach, which in spirit originates from the
theory of finite elements. (For full information on this subject, see the
references in Schwarz [15].) We subdivide a given region into meshes and
define a complex valued function on that region piecewise. The functions
defined on each individual mesh will be called elements. The vertices of the
occurring meshes will be called grid points and the set of all grid points a
grid.

The minimum requirement we impose is the continuity of that piecewise
defined function. Any such piecewise defined complex function which is
continuous will be called a complex planar spline.

The continuity already has a very serious implication. If we try to define a
complex planar spline by holomorphic elements like polynomials, then by
the well known identity theorem (e.g., Diederich and Remmert [9, p. 132,
Theorem 60]) all the elements represent just one holomorphic function. The
consequence is that it makes no sense to work with holomorphic elements.
Therefore, we have to use nonholomorphic elements.

Very simple nonholomorphic functions are polynomials in the complex
variable z and its complex conjugate z. These functions have the form

The number

n

(
-) ...' j,d,p z, z = 2... ajkz z ,

j.k=O
(Ll )

op =. max {j + k: aj •k =1= O}
J,k=O,I, ... ,n

(1.2)

will be called the degree of p. If op = 1 we shall say that p is linear; if op = 2
we shall say that p is quadratic; and if op = 3, 4, 5 we shall use the words
cubic, quartic, and quintic, respectively.

If we use the representation

z = x + iy, z=x- iy (1.3)

then

1 1
(1.4)x=-(z +z); y = 2i (z - z),

2

which means that a function in the real variables x and y can be transformed
into a function depending on the complex variables z and z, and vice versa.

Thus, a function u = u(z, z) may also be regarded as a function in x and y.
If u is continuously differentiable with respect to x and y, then we have
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Uy= i(uz - uz),

Ux + iuy
Uz= --:":"-2-"-

(1.5)

(1.6)

If u is twice continuously differentiable, then

(1. 7)

In the sequel we treat triangular, rectangular and parallelogrammatic
meshes, and meshes on circular sectors. The elements defined on those
meshes will be as simple as possible. Besides the aspects known from the
theory of finite elements, (for instance, interpolating properties,
computational aspects, and an error analysis), there are new aspects which
can be summarized by the term mapping properties of the newly defined
complex planar splines. These new aspects concern the following questions,
among others:

(I) How close are complex planar splines to comformality?

(II) Are complex planar splines quasiconformal?

(III) Are complex planar splines open mappings?

(IV) Is the boundary maximum principle valid for complex planar
splines?

In some cases these questions apply also to the difference f: =f - v
between a certain function f and a complex planar spline v.

Since the interpolating formulae for the complex case appear different
from the corresponding formulae for the real case, we believe that it is
reasonable to state these formulae here. We shall see that the complex inter­
polation and Lz-approximation problem reduce to two real problems such
that no new error analysis is needed. But the situation changes, for instance,
for the uniform approximation problem.

Besides the approximation of functions by complex planar splines, still
another application seems possible, namely, solving complex differential
equations like Beltrami's equation

(1.8)

without splitting them into real and imaginary parts. Equation (1.8) was
recently treated numerically by Weisel [16] for the case,u = 0 by solving the
corresponding real system with finite element techniques. A systematic
treatment of (1.8) can be found in Wendland [17]. Furthermore, for the
conformal mapping problem there also exists an investigation by Bosshard
[8] on the use of finite elements, again by treating corresponding real
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FIG. I. Complex planar spline interpolating Z2, domain and range.

problems. Also in this case a direct attack seems possible, which then avoids
the computation of the conjugate function to the computed real part of the
mapping.

Still another application is the automatic construction of meshes with
desired behavior. In many cases, for instance, it is desirable to construct
meshes which concentrate at a certain point. An example is shown in Fig. 1,
where the range of an interpolating complex planar spline is sketched. These
applications provide motivation for our study of complex planar splines and
their basic properties.

2. LINEAR COMPLEX PLANAR SPLINES

ON TRIANGULAR MESHES

A triangle ,1 is defined by its three vertices PI' P2 , P3 which are supposed
to be three pairwise different complex numbers not located on a straight line.
The three edges of ,1 will be designated by PIP 2 , P 2P 3 , P 3P p where the
order of the indices is irrelevant.

We first investigate one single element on a triangle ,1. We will use a
linear element of the form

p(z, i) =a +bz + cz; a, b, c E C. (2.1 )

For simplicity of notation we shall write p(z) instead of p(z, i).
It is clear that the interpolation problem p(Pj) = (j' j = 1,2,3, has a

unique solution for any three complex numbers (I' (2' (3' This solution is
given by
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+(3(P 1PZ-PIPZ»/o, (2.2)

b = «(I(PZ- P3) + (z(P3- PI) + (iPI - Pz))/o, (2.3)

e = «(I(P3- PZ) + (Z(P I - P3) + (3(PZ- P1»/0, (2.4)

where

(2.5)

(Note that Re(z) and Im(z) mean the real and imaginary parts of z, respec­
tively.)

It is easy to see that any three points z I' Z z, Z 3 E C form a triangle if and
only if

(2.6)

and this property is invariant under translation.
For the standard triangle PI = 0, Pz= 1, P3= i the above formulae reduce

to

with

b = H(I(i - 1) + (z - i(3)'

e = H-(l(i + 1) + (z + i(3)'

0= -2i.

(2.7)

(2.8)

(2.9)

(2.10)

For any given triangle with vertices PI' Pz, P3 we can construct three
special elements Pj' j = 1,2,3, by solving p/Pk ) = Ojk' j, k = 1,2,3, where
Ojk is the common Kronecker symbol. These elements are usually calledfarm
elements. They have the property that the general interpolating element P
with p(PJ = (j, j = 1,2,3, can be written in the simple form

3

p=L:(jPj'
j~1

(2.11 )

Their importance lies in the fact that they can be used to construct a basis
for the linear space of all complex planar splines, as will be seen later.

DEFINITION 2.1. A linear element P = a + bz +ei for any a, b, e E C is
called degenerate if Ibl = lei·
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Let R be a region in C and f: R -+ C a mapping which has continuous
partial derivatives Jz and fl' Iff is quasiconformal, the numbers

and

d(z) = IJz(z)1 + IfZ(z)1
IJz(z)I-lfZ(z)1

tL(z) = Jz-(z)
Jz(z)

(2.12)

(2.13 )

are called the dilatation quotient and complex dilatation at the point z,
respectively (Lehto and Virtanen [10, p. 52,191]). We always have d(z)~ 1.
In case d(z) = 1, z could be called a conformal point. If d(z) = 1 for all z,
then f is conformal.

The following theorem gives some properties of a linear element p.

THEOREM 2.1. A linear element p(z) = a +bz +ci, a, b, c E C has the
following properties:

1. If zl' Z2 E C, then

for all AE IR. (2.14)

2. The range ofp applied to a triangle is again a triangle ifand only if
p is nondegenerate.

3. p is an orientation preseroing homeomorphism if and only if Ib I >
lei·

4. P is an open mapping if and only ifp is nondegenerate.

5. p is quasiconformal if and only if Ibl > lei. In that case its
dilatation is a constant given by

d = IbI+ lei (2.15)
Ibl-lel

and the complex dilatation is a constant given by

(2.16)

(6) If we apply p to an angle r, 0< r < n, the angle r is distorted by
the angle

_ Icl 2 + Re(bc) - Im(bc) tan r (2.17)
r = arctan 1 2 2 1 2 •

Im(bc) + 2(lcl -Ibl ) tan r - 21b + cl cot r
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Proof Properties 1-5 are immediate. The proof of property 6 follows by
standard computations. I

We now come to another important application of Theorem 2.1.

DEFINITION 2.2. Two triangles .1 1 ' .1 2 are called neighbors or
neighboring if they share a common edge.

THEOREM 2.2. Let .11' .1 2 be two neighboring triangles with the common
edge PI P2 (see Fig. 2). Further let Pj be a linear element in .1j ' j = 1,2. If

j= 1,2, (2.18)

then PI (z) = P2(Z) for all z E PIP2' and consequently

p(z) = PI(Z)

= P2(Z)

for Z E .1 1

for Z E .1 2

(2.19)

is continuous on .1 1 U .1 2 •

Proof Follows directly from Theorem 2.1 (property 1). I
Now if we subdivide a region into triangular meshes and define a linear

element in each mesh we obtain a complex planar spline if we impose
condition (2.18) for each pair of neighboring triangles. In the triangulation,
however, we do not allow that a vertex of any triangle is interior to any other
edge. More specifically the triangulation has to be proper (Prenter [11,
p. 127]).

The form elements introduced earlier are used to construct a basis for the
linear space V of all complex planar splines. Let R be a region in C,
subdivided into finitely many triangles and PI' P 2 , ... , PN its grid points. A
complex planar spline associated with the grid point Pj and defined by

for Z = Pj

for z E {PI'P 2 , ...,PN } - {Pj }, j= 1,...,N,

will be called a (global) form function. It can be constructed piecewise from
the (local) form elements already known. Assume that TI' T 2 , ... , Tko are the

J

FIG. 2. Neighboring triangles.
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triangles which have Pj as a common vertex. Then combine those form
elements defined in Ti' T2 , ... , Tk . which have the value one at Pj and zero at
the two other vertices with the ~ero elements on all other triangles. Clearly

v= (Vi' v2 '· .. , vN ).

A complex planar spline in general does not represent an open mapping
even if all elements are not degenerate. To see this we define a complex
planar spline on the square

Q= {z:O~Rez~1,0<lmz~ I},

which we divide into two triangles,

Al = {z E Q: Re z +1m z ~ 1},

,12 = {z E Q: Re z + 1m z ;;;: I},

and define

(2.20)

(2.21 )

(2.22)

v=Z

= 1+ i - iz

for zEAl

for z E ,12'
(2.23)

which is then a complex planar spline on Q.
However, the range of Q under v is Al such that the range of any open set

in Q containing parts of the diagonal of Q is not open.
But we have the following lemma (where the proof is obvious).

LEMMA 2.1. Ifa complex planar spline represents a univalent function it
is an open mapping.

A consequence of this lemma is the following.

THEOREM 2.3. Let v be a complex planar spline which interpolates a
univalent, holomorphic mapping f on the grid points of a szifJiciently fine
triangular grid which is inside of the domain of definition of f Then v is
univalent and open.

Proof Since f is conformal, a small triangle is mapped such that the
images of the three vertices form a triangle. Therefore, the interpolating
complex planar spline maps the triangular grid onto another triangular grid
in a univalent way. The result follows from Lemma 2.1. I

LEMMA 2.2. Let f be a holomorphic function in a region Rand g a
holomorphic function in R = {z: z E R}. Define a function h on R by h(z) =
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f(z) +g(z), z E R. If h is not constant, then Ih I does not admit a maximum
in R.

Proof It is sufficient to show that I h 1
2 has no maximum in R. If L1

represents the Laplace operator as defined in (1. 7) we obtain

But this implies that I h 1
2 is subharmonic. Since h is not constant, I h 1

2 does
not admit a maximum in R (Ahlfors [6, p. 245 D. I

Particularly a nonconstant linear element p itself has the property that it
admits no maximum in the interior of the triangle in which it is defined. This
is a stronger property than property 4 of Theorem 2.1.

Clearly, a complex planar spline is not subharmonic in general. As an
example take an interpolating spline which is I at one interior grid point and
o at the other grid points.

3. QUADRATIC COMPLEX PLANAR SPLINES ON

RECTANGULAR AND PARALLELOGRAM MESHES

First we study splines on rectangles whose sides are parallel to the axes.
Such a rectangle 0 (called quabla in physics) is defined by its four vertices
PI' P2' P3' P4' which are to be understood as pairwise distinct complex
numbers with ImPI =ImP2 , ImP3 =ImP4 , RePI =ReP4 , ReP2 =ReP3

arranged in positive orientation.
We first investigate one single element on a rectangle D. A quadratic

element of the form

p(z) = a +bz + cz +d(z2 - Z2), a, b, c, dE C, (3.1)

will be used. That the use of this element is reasonable will be seen in
Theorem 3.1. The interpolation problem p(Pj ) = (j, j = I, 2, 3, 4, again has a

unique solution for any four complex numbers (I' (2' '3' '4:
a = (l/t5)((P; - P;) (I - (P~ -~) (2

+(pi - Pi) (3 - (P~ - ~) (4)'

b = (2/t5)(-P3(1 +P4(2 -PI (3 +P2(4)'

c = (2/t5)(P3 (I - P4(2 +PI (3 - P2(4)'

d = (1/15)((1 - (2 + (3 - (4)'

(3.2)

(3.3)

(3.4)

(3.5)
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(3.6)

In the case of quadratic complex planar splines on rectangular meshes, we
have the following analogue of Theorem 2.1.

THEOREM 3.1. Let P, Q any two distinct points of C and p a quadratic
element as defined in (3.1) with d 1= 0.

Then

p«1 - A)P +AQ) = (1 - A)p(P) + Ap(Q) for all AE [0, 1) (3.7)

ifand only if the straight line through P and Q is parallel to the x- or y-axis.

Proof Set ZA = (1 - A) P +AQ. Then because of Theorem 2.1 and d 1= 0,
(3.7) is equivalent to

for all AE [0, 1). (3.8)

Let P = x + iy and Q= u + iv. After routine computations we deduce from
(3.8) that xCv - y) = u(v - y), which yields the assertion. I

DEFINITION 3.1. Two rectangles will be called neighbors or neighboring
if they share a common edge (Fig. 3).

THEOREM 3.2. Let °\,°2 be two neighboring rectangles whose sides are
parallel to the axes, with the common edge P\P2 (Fig. 3). Let Pj be a
quadratic element of the form (3.1) defined on OJ' j = 1,2. If

then

j= 1,2, (3.9)

for all z E P \P 2 •

~
'

P, P,
0,

FIG. 3. Neighboring rectangles.
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p(z) =PI(Z)

=piz)

for z E °1

for z E 02
(3.10)

is continuous on °1 U 02 .

Proof Follows directly from Theorem 3.1. I
Now if we subdivide a region into rectangular meshes where the sides of

the rectangles have to be parallel to the axes then we obtain a complex
planar spline if we impose condition (3.9) for each pair of neighboring rec­
tangles.

THEOREM 3.3. Let R be any region in C, f a holomorphic function in R
and p a quadratic element as defined in (3.1). If f - p is not constant, then
If - pi does not admit a maximum in R.

Proof Since f - p is a sum of a holomorphic function in z and a
holomorphic function in i, Lemma 2.2 applies and yields the desired
result. I

This theorem applies particularly to p itself.
More information about the quadratic element p as defined in (3.1) can be

deduced from its Jacobi determinant

(3.11 )

(see Lehto and Virtanen [10, p. 136]), which reads, in the present case,

J(z) = Ib + 2dzl2-Ic - 2dil2

= Ibl 2 -lcl 2 + 2(db +dc)z + 2(db + dc)i.

The set

H= {z:J(z)=O}

is either a straight line or a point in C.

(3.12)

(3.13)

DEFINITION 3.2. The quadratic element p(z) = a +bz + ci +d(z2 - i 2),
a, b, c, d, z E C, is called degenerate if

(J = db +dc = O. (3.14)

Now, H of (3.13) is a straight line in C if and only if p is not degenerate.
If p is degenerate then (3.14) implies d = 0 or Ib I= Ic I. If P is not degenerate

640/31/U
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then the straight line H forms the angle a with the real axis, which is given
by

Re (db + de)
tan a = - - ,

1m (db +de)
o~ a < n. (3.15)

Let us assume now that p is not degenerate. If the domain of definition of p
is any compact set S in C which is located in the half plane

H+ = lz:J(z) >O} (3.16)

then p is locally an orientation preserving homeomorphism in S which then
is also quasiconformal in S since its dilatation quotient (see 2.12) is
bounded.

In order to find out whether p is a global homeomorphism we study the
solutions of

(3.17)

If we use the abbreviations

Eq. (3.17) reads

(3.18)

P(Z2) - P(ZI) = x(b +dy) + x(e - dy) = O.

From this it follows that

(3.19)

(3.20)

where (J was already introduced in (3.14). If we use this equation to
eliminate x from (3.19) we obtain

(3.21 )

in case x * 0. Let J(z) > 0, j = 1,2. Then from (3.12) by forming
J(z I) +J(Z2) it follows that

(3.22)

which contradicts (3.21).
To summarize: If p is not degenerate then it is univalent in both half

planes H+ and H- = lz: J(z) <Of.
Since the domain of definition of p is a rectangle R whose sides are

parallel to the axes, one can find out whether R c H+ just by inserting a
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suitable vertex into J. To explain that we distinguish four cases according to
the special location of H+ in C.

Case 1. nl2 ~ a <nand H+ is a right half plane in C.

Case 2. a = °and H+ is an upper half plane in C. or °<a <nl2 and
H+ is a left half plane in C.

Case 3. nl2 ~ a <nand H+ is a left half plane in C.

Case 4. a =°and H+ is a lower half plane in C. or °<a < nl2 and
H+ is a right half plane in C.

The words left, right, lower, upper half plane are used in the ordinary sense.

THEOREM 3.4. Let R be a rectangle whose sides are parallel to the axes.
Call PI the lower left, Pz the lower right, P3 the upper right and P4 the upper
left vertex of R. Further let p be a nondegenerate quadratic element (as
defined in (3.1» on R. Then the mapping p is an orientation preserving
homeomorphism and quasiconformal on R if and only if J(Pj ) >0, where j is
determined by the case number j to which H+ belongs, j E {I, 2, 3,4}.

Proof If we are in case j, j E {I, 2, 3,4}, then J(Pj ) >°is equivalent to
R cH+. I

If for mnemonic reasons one would like to give this theorem a name, then
four corner theorem seems to be very suitable, since all four corners of the
rectangle R are involved.

Under the assumptions stated p will be an orientation inverting
homeomorphism on R if and only if J(Pk ) <0, where k = (j + 2) mod 4 and
j is determined as before.

If a rectangle is subdivided in this way into m . n little rectangles, then
there are m . n elements having p = 4m . n parameters altogether. Further
there are s = 3mn - m - n - I continuity conditions leaving p - s =
(m + I )(n + I) parameters free, where (m + 1)(n + I) is also the number of
grid points.

Now we can adjust the element (3.1) to the case where the rectangle has
any position in the plane. If one of the edges of a given rectangle forms the
angle a with the x-axis then instead of (3.1) one must use

p(z) = a + bz +cz + d(zZ - e4iazZ). (3.23)

Since a parallelogram can be mapped by a linear transformation I of the
type (2.1) onto a rectangle whose sides are parallel to the axes one can also
work with parallelograms.

If aI' a z E iC, with a l * A.a z for any A. E IR, describe the directions of the
parallelogram grid, which means that the two angles fJj, j = 1,2, with the
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real axis are given by tan Pj = Re a j /lm aj' j = 1,2, then the aforementioned
linear transformation I yields an element of the form

4. SPLINES ON DISKS AND CIRCULAR SECTORS

Let S be a circular sector. If we divide the radius into k subintervals and
the opening angle into I - 1 subintervals, we obtain, in total, k(l- 1) meshes
of two types, which we would call rectangular and triangular meshes,
respectively. The triangular meshes contain the origin 0 of S, whereas the
rectangular meshes do not contain the origin (see Fig. 4).

It is straightforward to use polar coordinates with respect to the origin 0
of S in this situation. Therefore for rectangular meshes we use an element of
the form

p(z) =p(rei
</» = a +br +c¢ + dr¢, a, b, c, d E iC. (4.1 )

Let PI' P2' P3 , P4 be the vertices of one specific rectangular mesh in
positive orientation such that ¢1=argP1=argP2, ¢2=argP3 =argP4 ,

r l = IPII = IP4 1, r2 = IP21 = IP3 1 (see Fig. 5).
Then the solution of the interpolation problem

(j E C, j = 1, 2, 3, 4, (4.2)

is given by

a = (r2¢2(1 - r l¢2(2 + rl ¢I (3 - r2¢1 (4)/J,

b = (-¢2(1 + ¢2 (2 - ¢I (3 + ¢I (4)/J,

c = (-r2(1 + rl (2 - r l (3 + r2(4)/J,

FIG. 4. Sector S subdivided into rectangular and triangular meshes.

(4.3)

(4.4)

(4.5)
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(4.6)

(4.7)

Now assume that 0, P, Q are the vertices of a triangular mesh in positive
orientation, where 0 is the origin of the sector S (see Fig. 5). In order to find
out what type of element to use, we study the interpolation problem for a
rectangular mesh, where PI --+ 0, P4 --+ °and (I = (4' such that IP II = IP41 and
arg PI = arg P2' arg P4 = arg P 3 •

After some computation we find c --+ °in (4.1). This means that we have
to use an element of the form

p(z) = a +(Jr + yr~, a, (J, y E iC. (4.8)

If we assume that P and Q have the polar coordinates (r I, ~ I) and (r2' ~2)'
respectively, then the interpolation problem

has the solution

pep) = (2' p(Q) = (3'

a=(l' (4.10)

(J = (-(~2 - ~I) (I + ~2(2 - ~I (3)/fJ, (4.11 )

and

y = (-(2 + (3)/fJ, (4.12)

where

fJ = 1/rM2 - ~I)' (4.13 )

FIG. 5. Triangular and rectangular mesh of a circular sector.
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THEOREM 4.1. Let S be a circular sector subdivided into meshes as
described above and mj , j = 1,2 two neighboring meshes sharing the
common edge E = P, P2. Let Pj be an element defined on mj , where Pj has
the form (4.1) if mj is a rectangular mesh or the form (4.8) if mj is a
triangular mesh, j = 1,2.

If

p,(Pj) = P2(P), j= 1,2, (4.14 )

then

p,(z) = P2(Z) for all z E E. (4.15 )

Consequently,

p(z) = p,(z) for zEm l
(4.16)

= P2(Z) for z E m2

is continuous on m, U m 2.

Proof The elements (4.1) on rectangular meshes as well as the elements
(4.8) on triangular meshes are linear on the edges of their respective domain
of definition. I

The element P introduced in (4.1) has the same form as the element P
defined in (3.1) and used for ordinary rectangles.

In order to see this, one has only to identify Re z with r and 1m z with ?
The consequence is that no particular analysis is required besides that for
elements on ordinary rectangles.

We end this section with the computation of the number of free
parameters in a complex planar spline on a circular sector.

The k(l- 1) meshes distribute in (k - 1)(l- 1) rectangular and 1- 1
triangular meshes. In order to make a piecewise defined function continuous
we have to impose 1(3k - 1) - 4k conditions. The number of parameters is
(1- 1)(4k - 1), leaving lk + 1 parameters free. This is also the number of
grid points.

5. LEAST-SQUARES ApPROXIMATION AND INTERPOLATION

WITH COMPLEX PLANAR SPLINES

If we want to approximate a complex valued function by complex planar
splines of a certain type, we end up with minimizing a real valued functional
defined in eN, N E IN.
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To treat such a problem it is not necessary to rewrite it in real form. Let
us assume that we have to handle the problem

¢(a) = min, (5.1 )

where ¢ may also explicitly depend on ii. If ¢ has continuous partial
derivatives with respect to all components of a, then

j = 1, 2,... , N, a = (aI' a2 , ••• , a,,), (5.2)

is a necessary condition for a to be a minimum of ¢. This follows
immediately from (1.5) and (1.6).

If g, h: eN -+ e are complex valued functions possessing continuous partial
derivatives with respect to a and ii, then

(5.3)

(5.4 )

(5.5)

and if g does not depend on ii explicitly, then

(5.6)

The least-squares problem can be treated along the lines of Schultz [14,
Chap. 6) as follows.

Let R be a compact set in e subdividable into meshes of the discussed
form, IE L 2(R) and V the linear space of all complex planar splines, where
V = (VI' v2 , ... , vN) and the vj are the global form functions defined earlier,
j = 1,2,..., N. It should be noticed that the form functions are real by
definition.

The problem here is to minimize

Using (5.2) to (5.7), we obtain
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which reduces to the linear system

Ca=r,

where

C = (Cjk ) = f VjV k dx dy,
R

r = (rj ) =f fV j dx dy,
R

j, k = 1, 2,... , N,

j = 1,2,... , N.

(5.8)

(5.9)

(5.10)

Since Cis a real matrix, system (5.8) can be partitioned into the two real
systems,

CRea = Rer, Clma =Im r, (5.11)

where Re a is the vector of the real parts of a; analogous meanings apply to
Re r, 1m a, and 1m r.

Clearly (5.8) has a unique solution since ¢ is strictly convex.
Let vbe the best least-squares approximation of f The error analysis can

be directly taken from the real case (e.g., Schultz [14, Chap. 6]) since

Ilf - vii = IIRe(f- v) + i Im(f- v)11
:< IIRef- Re vii + Illmf- 1m vii·

(5.12)

This means that the order of convergence is the same as that in the real
case, but the convergence constants have to be doubled, provided, of course,
that Ref and Imf are of the same smoothness.

An interpolation problem

k=I,2,...,K, (5.13)

where v is a complex planar spline, f is a given function, and Z k' k =
1,2,... ,K, are given grid points, may also be partitioned into two real
problems by splitting Eq. (5.13) into real and imaginary parts. The above
remarks on the error analysis therefore also apply here.

6. A NUMERICAL EXAMPLE

We subdivide the standard triangle 0, 1, i in the usual way by dividing its
two smaller sides into l/h = 2\ k = 0, 1,... ,5, pieces of equal length and
divided the resulting little squares of side length h diagonally by parallels
through the hypotenuse of the standard triangle. We obtained a complex
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TABLE I

Spline Interpolating the Exponential Function on Standard Triangle

h eh Ch dh ch

I 0.3730 1.54 2.229 1.45
1/2 0.1285 1.79 1.451 1.19

1/4 0.0372 1.90 1.198 1.09
1/8 0.00996 1.95 1.093 1.05
1/16 0.00257 1.98 1.045 1.03

1/32 0.000653 1.022

401

planar spline vh by interpolating the exponential function at the grid points
of that triangle.

In Table I we list the computed values eh = Ilexp - vhll oo ' the
corresponding numerical convergence order ch of eh , the maximal dilatation
quotient dh over all meshes (compare Formula (2.15», and the
corresponding convergence order ch of dh •

The fact that eh approaches 0 with order 2 is of course known (Schultz
[14, Chap. 2D. According to our computation the maximal dilatation
approaches one with order one. The number dh - 1 could be called deviation
from conformality. To the best of our knowledge, neither numerical values
for the dilatation dh nor theoretical investigations on the behavior of dh as
h ~ 0 appear in literature.
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